
A Theory of Abstraction for Diagnosis
of Discrete-Event Systems

Alban Grastien∗

NICTA and the Australian National University,
Canberra, Australia

Gianluca Torta
Università di Torino, Torino, Italy

Abstract

We propose a theory of abstraction of discrete-event
systems (DES) formulated at the semantic level, i.e.,
as a function that maps event traces at the original
(ground) level to traces at the abstract level.

We study how diagnosis of DES can be performed us-
ing an abstract model, and under which conditions this
process leads to a correct solution (i.e., a set of alter-
native diagnoses that include the real status of the sys-
tem).

Finally, we study how the use of an abstract model
can affect the precision of diagnosis, i.e., the presence
of spurious system states in the solution. To this end,
we introduce the notion of diagnosability with abstract
models, which ensures the precision of abstract diag-
noses, and we discuss a practical way to test it.

1 Introduction

Diagnosis is the problem of detecting fault occurrences
in a system and determining which specific fault oc-
curred. In model-based diagnosis of discrete-event sys-
tems (DES, (Cassandras and Lafortune 1999)), this is
done by deciding whether the system model allows for
traces of a given fault mode consistent with the obser-
vation. There exist different techniques for diagnosis
of DES, based on different modeling tools: automata,
Petri nets, process algebras, propositional logic, etc.
They all suffer the same major drawback which is that
reasoning on a DES model is exponentially complex in
the number of components in the system it is modeling:
the system state space is roughly the Cartesian product
of its component state spaces.

An important point, which is the underlying motiva-
tion of the present work, is that the DES model avail-
able for diagnosis is often at the wrong level of abstrac-
tion and, in particular, it contains too many irrelevant
details. This can usually be explained by the fact that

∗NICTA is funded by the Australian Government as rep-
resented by the Department of Broadband, Communica-
tions and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.
Copyright c© 2011, Association for the Advancement of Ar-
tificial Intelligence (www.aaai.org). All rights reserved.

the model is built by assemblying pre-existing compo-
nent models, or by the fact that it has been designed to
support different tasks (including diagnosing different
types of faults). Model abstraction is a way to move
from a model that is too detailed to the correct level of
abstraction for the current purpose. Therefore, model
abstraction, implicitly or explicitly, has become, and
will become, increasingly important to diagnose large
systems.

In this paper we propose a theory of abstraction for
the diagnosis of DES, formulated at the semantic level
as a transformation of the set of possible behaviors of
the DES. This transformation indirectly leads to syn-
tactic transformations of the specific representation of
the DES as a finite automaton, and therefore also such
a representation is considered.

The goal of the present proposal is not that of rep-
resenting an exhaustive account on the abstraction of
DES. Instead, we would like to provide a formal frame-
work for abstraction in diagnosis of DES, and foster
further resarch on the topic based on solid ground.

We discuss the properties useful abstractions should
satisfy and identify the well-known model increasing
property (Giunchiglia and Walsh 1992; Nayak and
Levy 1995) as essential. We also demonstrate that
observation- and fault-consistency are important in or-
der to preserve the correctness of the diagnosis. Finally,
we consider the fundamental property of diagnosability,
which states that a fault will always eventually be di-
agnosed; we show that diagnosability checking for an
abstract model should be defined with respect to the
original model.

The paper is structured as follows. We introduce di-
agnosis of DES in the next section. We define abstrac-
tion and related properties in Section 3. In Section 4
we show how abstract models may be built. Finally,
diagnosis and diagnosability using abstract models are
presented, respectively, in Sections 5 and 6.

2 Model-Based Diagnosis

Model-based diagnosis (MBD) is a diagnosis technique
performed by comparing a system model with the ob-
servation emitted by the system.

In this paper, we are interested in MBD of DES. A

DES is a model for dynamic systems where the sys-
tem evolution is modeled by the occurrence of discrete
events. We will discuss about the DES at two different
levels: the semantic level describes what the DES mod-
els, while the syntactic level describes how the DES is
represented. Most definitions (notably, the definition of
abstraction function itself) will be given at the seman-
tic level, although it will often be useful to also discuss
their meaning and impact at the syntactic level.

2.1 Semantic Level

Given a set of events Σ, a finite sequence of events will
be called a trace and denoted by u ∈ Σ∗. The prefix
relationship will be denoted by u < v, i.e., u is a prefix
of v. To simplify the definitions, we consider that the
system can only be in one of two modes Υ = {N, F}:
the nominal mode N and the faulty mode F ; this re-
striction can be lifted without affecting much of our
discussion.

A language B of finite traces is a subset of Σ∗; it is
prefix-closed if it contains all the prefixes of each trace
in it: ∀u ∈ B, ∀u′

< u, u′ ∈ B; it is live if it contains at
least a continuation of each trace in it: ∀u ∈ B, ∃u′ ∈
B : u < u′.

Definition 1 At the semantic level, a DES M is de-
fined by a language B(M) ⊆ Σ∗ such that u ∈ B(M) is
a possible finite evolution of the system according to the
model. We require B(M) to be prefix-closed and live.

The set of possible system evolutions B(M) is the
union of the sets BN (M) and BF (M), which respectively
contain the nominal and the faulty evolutions. We re-
quire that the set BN(M) is prefix-closed while the set
BF (M) is live.

Finally, we assume that a subset Σo ⊆ Σ of events
are observable.

Note that, because the model may be imprecise or
abstract, the sets of nominal BN(M) and faulty behav-
iors BF (M) may intersect, i.e., there may exist traces
u ∈ B(M) that belong to BN (M) ∩ BF (M).

2.2 Syntactic Level

The syntactic level describes how the DES model is
represented. We focus on DES models that can be rep-
resented as finite automata.

Definition 2 At the syntactic level, a DES M is de-
fined by a tuple A(M) = 〈Q, Σ, T, Σo, q0,Q〉 where

• Q is a set of states and q0 ∈ Q is the initial state,

• Σ is a set of events and Σo ⊆ Σ is the set of observ-
able events,

• T ⊆ Q × Σ × Q is a set of transitions,

• Q : Q → 2Υ\{∅} is a function labeling the DES
states.

The link between the semantic and the syntactic lev-
els is the following one. The language B(M) is defined
as the list of traces u that label a path on the DES
automaton from the initial state. A trace u that leads

to a nominal state q (i.e., s.t. N ∈ Q(q)) is a nominal
trace in BN(M); a trace u that leads to a faulty state q
(i.e., s.t. F ∈ Q(q)), is a faulty trace in BF (M). Since
a state q may be labeled by {N, F}, the traces that lead
to it are both in BN (M) and BF (M).

2.3 Diagnosis

A system evolution modeled by trace u ∈ Σ∗ gener-
ates observations defined as the sequence of observable
events in u. Such a sequence is denoted by σ = obsΣo

(u)
or simply obs(u). A diagnosis problem is defined by a
system model and an observation of a finite trace.

Definition 3 A model-based diagnosis problem (MBD
problem) is a pair P = 〈M, σ〉 where M is a DES and
σ ∈ Σo

∗ is the observed (and assumed exact) sequence
of observable events that took place in the system.

The purpose of diagnosis is to estimate whether the
fault mode was reached. In MBD, the estimate is done
by determining the fault mode of the behaviors pre-
dicted by the model for these observations.

Definition 4 The model-based diagnosis (MBD) of
problem P = 〈M, σ〉 is the set of labels ∆(P) ⊆ Υ de-
fined by ∆(P) = {l ∈ Υ | ∃u ∈ Bl(M) : obs(u) = σ}.

This corresponds to the following, more familiar, for-
mula defined at the syntactic level on automaton A(M).

∆(P) = {l ∈ Υ | ∃q ∈ Q, ∃u ∈ B(M) :

(obs(u) = σ) ∧ (l ∈ Q(q)) ∧ (q0

u
−→ q)}

This computation can be implemented by unfolding the
model according to the observations (Zanella and Lam-
perti 2003).

Two important properties that a diagnosis ∆(P) can
exhibit are correctness and precision.

Definition 5 Let δ ∈ Υ be the actual mode of the sys-
tem evolution being monitored. Diagnosis ∆(P) is cor-
rect if δ ∈ ∆(P); it is precise if ∆(P) ⊆ {δ}.

Correctness means that fault mode δ is correctly in-
cluded in diagnosis ∆(P); precision means that other
fault modes are precisely excluded from diagnosis ∆(P).
It is often impossible to have both correctness and pre-
cision because the model is incomplete and the system
is only partially observable; in general, however, it is re-
quired that the diagnosis is at least correct (Krysander
and Nyberg 2008).

We illustrate the above concepts with the simple DES
shown in Figure 1. The states are represented by nodes
and the transitions by arrows; the nodes are labeled
with the associated fault mode(s).

In this example, a user requests for access, and her
request may be granted (in which case she may write or

cancel her action) or denied, in which case she should
not be able to write. A fault occurs when the user
writes despite a denial.

Assume the (faulty) trace u1 = r · d · f · w · r · g · w.
If the set of observable events is Σo = {r, d, c}, then

0N 1N

2N

3N 4F 5F

6F7F

r

g

d

w|c

c f w

r

g|d

w|c

Figure 1: Example DES model automaton.

the observation is obs(u1) = r · d · r and the MBD is
∆ = {F} which is both correct and precise; if the set of
observable events is Σ′

o = {r, w, c}, then the observation
is r · w · r · w and the MBD is ∆ = {N, F} which is
correct but imprecise. Assume on the other hand that
the model is incomplete, and that the nominal trace
u2 = r · d · r · g · w (which is not allowed by the model)
is the real system behavior. Assuming the observable
events are Σo = {r, d, c}, the observation is obs(u2) =
obs(u1) = r · d · r and the MBD is {F} which is both
imprecise and incorrect.

It is usually assumed that all possible traces of the
system are in the model, and are labeled correctly with
one or more modes l ∈ Υ; in such a case it is easy to
see that the MBD is always correct. We shall see that,
even when we can make this assumption for the original
DES model M , some important conditions are required
in order for it to hold also for an abstraction of M .

3 Abstraction

Generally, abstraction is an operation on models that
removes irrelevant details. The goal of this section is
to provide a sound formalization of the abstraction of
DES models suitable for the MBD task.

3.1 Abstraction Definitions

When an abstraction is performed on a DES, the ab-
stract model may be defined on a different set of events.
Those new events are usually of higher (abstracted)
level. Without loss of generality, we assume the original
set and the abstract set of events are disjoint.

The abstraction function presented below defines how
a trace is mapped in the new abstract model.

Definition 6 Let Σ and Σ′ be two sets of events. An
abstraction function α from Σ to Σ′ is a total function
from Σ∗ to Σ′∗ such that

• α(ε) = ε and

• ∀u, v ∈ Σ∗, u ⊑ v ⇒ α(u) ⊑ α(v).

Given a trace u1 defined on events of Σ, the abstrac-
tion α(u1) returns a trace on events of Σ′. If trace u1 is
extended with additional events to a trace v = u1 · u2,
the abstraction of v is an extension of α(u1), i.e., a trace
α(u1) ·u′

2. Notice however that, in general, it is not the
case that u′

2 = α(u2), i.e., the abstraction of a trace

u that can be decomposed as a concatenation of sub-
traces u1 · . . . · uk is not necessarily the concatenation
of the abstractions of the sub-traces ui, i = 1, . . . , k.

The abstraction function is defined at the semantic
level; we now give a corresponding definition at the syn-
tactic level.

Definition 7 An abstraction automaton is a deter-
ministic finite state machine A = 〈Q, Σ, Σ′, T, q0〉 where

• Q is a set of states partitioned in input states QI and
output states QO, and q0 is an input state, and

• T ⊆ Q×(Σ∪Σ′)×Q is a set of transitions partitioned
into input transitions TI and output transitions TO

where

– TI ⊆ QI ×Σ×Q such that ∀q ∈ QI , ∀e ∈ Σ, ∃!q′ ∈
Q : 〈q, e, q′〉 ∈ TI , and

– TO ⊆ QO × Σ′ × Q such that ∀q ∈ QO, ∃!〈e, q′〉 ∈
Σ′ × Q : 〈q, e, q′〉 ∈ TO.

In this definition, ∃! stands for there exists exactly one.
The automaton is partitioned into two sub-automata.
The input sub-automaton reads a trace from Σ∗; be-
cause any trace can be emitted, this sub-automaton is
complete, i.e., it defines a successor for any event. The
output sub-automaton outputs a trace from Σ′∗ which
corresponds to the abstract trace.

The traces of an abstraction automaton are defined
similarly to traces of regular automata except that we
only consider traces that end up in an input state, i.e.
we define the language of A as:

B(A) = {v ∈ (Σ ∪ Σ′)∗ | ∃q ∈ QI : q0

v
−→ q}

Given a trace v ∈ (Σ1∪Σ2)
∗, we denote by PrΣi

(v) the
restriction of v to the events of Σi.

We now link the notion of abstraction automaton to
the notion of abstraction function.

Definition 8 An abstraction automaton A =
〈Q, Σ, Σ′, T, q0〉 is an automaton representation of
α (denoted as A(α)) iff:

• for each trace v ∈ B(A), then α(PrΣ(v)) = PrΣ′ (v),
and

• for each trace u ∈ Σ∗, there exists a trace v ∈ B(A)
such that PrΣ(v) = u (and therefore PrΣ′(v) =
α(u)).

It should be noted that not every abstraction function
can be represented by a finite automaton; however in
this paper we focus on abstraction functions that have
such a representation.

Definition 7 is illustrated in Figure 2 for an ab-
straction function α where Σ = {c, d, f, g, r, w}, Σ′ =
{d′, g′, w′}, and for every trace u ∈ Σ∗, events r, f and
c are ignored, whilst events g, d, and w are respectively
mapped to g′, d′, and w′. In this example, q is the
only input state. It is easy to see that the automaton
is indeed a representation of α since it satisfies both
conditions of Definition 8.

We can now define the abstraction of a DES M .

q

qg

qd

qw

r|c|f

g

g′

d

d′

w

w′

Figure 2: Example of automaton representation of an
abstraction function.

Definition 9 Let M and M ′ be two DES defined on
the event sets Σ and Σ′, and let α be an abstraction
function from Σ to Σ′. Then M ′ is an abstraction of
M through α.

Note that this (very general) definition closely mirrors
the definition of abstraction of a formal system given
in (Giunchiglia and Walsh 1992), but deals with the
semantic level, while Giunchiglia and Walsh’ definition
is at the syntactic level.

The definition ignores the languages B(M) and
B(M ′) associated with the DES M and M ′, as far as
such languages are respectively defined on the two sets
Σ, Σ′ involved by the abstraction function α. One con-
sequence is that, given M and α there exist an infi-
nite number of models M ′ that are abstractions of M
through α; we will come back to the point of deriving
a model M ′ from M and α in Section 4.

3.2 Abstraction Properties

The first property we introduce relates the observations
on the original and the abstracted traces.

Definition 10 Let α be an abstraction function from
Σ to Σ′ and let Σo, Σ′

o be the observable events of
Σ and Σ′. The abstraction function is obs-consistent
w.r.t. Σo, Σ′

o if ∀u, v ∈ Σ∗, obsΣo
(u) ⊑ obsΣo

(v) ⇒
obsΣ′

o
(α(u)) ⊑ obsΣ′

o
(α(v)).

The obs-consistency property ensures that the ab-
stractions of two traces that are equivalent from the
point of view of the emitted observations will re-
main equivalent after the abstraction. An abstraction
through an obs-consistent abstraction function will be
also called obs-consistent.

Lemma 1 If abstraction function α is obs-consistent
w.r.t. Σo, Σ′

o, there exists an abstraction function αo

from Σo to Σ′

o such that:

∀u ∈ Σ∗, obsΣ′

o
(α(u)) = αo(obsΣo

(u)).

Abstraction function αo is called the observable ab-
straction function of α (w.r.t. Σo and Σ′

o).
Sketch of Proof: First of all we note that, since

α is obs-consistent w.r.t. Σo, Σ′

o, for any σ ∈ Σo
∗, for

any u ∈ Σ∗ s.t. obsΣo
(u) = σ, then obsΣ′

o
(α(u)) =

obsΣ′

o
(α(σ)) (recall that σ ∈ Σ∗, so α is defined on

σ). We define αo such that for all σ ∈ Σo
∗, αo(σ) =

obsΣ′

o
(α(σ)). It is easy to show that αo satisfies both

Definition 6 (i.e., it is an abstraction function) and the
additional condition in the statement of this lemma. 2

The result of Lemma 1 together with Definition 10
is very important. In a diagnosis context, we observe
the sequence σ = obs(u) from an unknown trace u; but
what this result says is that there exists a well-defined
abstraction αo(σ) that can be used for the diagnosis at
the abstract level (see section 5).

Another useful property of an abstraction relates this
time to the faulty mode(s) attached with each trace.

Definition 11 Let DES M ′ be an abstraction of
DES M through α. The abstraction is fault-consistent
if for each fault mode l ∈ Υ, for each u ∈ B(M):

α(u) ∈ B(M ′) ∧ u ∈ Bl(M) ⇒ α(u) ∈ Bl(M
′)

Fault consistency ensures that if trace u is associ-
ated with fault mode l, then also its abstraction α(u)
is associated with l1. In particular, if one or more be-
haviors u1, u2, . . . are abstracted to the same behavior
u′ = α(ui), i = 1, 2, . . . then u′ must be associated with
every fault mode associated with at least one of the
behaviors ui. Note that fault-consistency, contrary to
obs-consistency, is not just a property of α, but it is a
property of a specific abstraction M ′ of M through α.

Following (Giunchiglia and Walsh 1992), we now
define model-increasing and model-decreasing abstrac-
tions.

Definition 12 Let DES M ′ be an abstraction of
DES M through α.
The abstraction is model-increasing (MI) if ∀u ∈ Σ∗,
u ∈ B(M) ⇒ α(u) ∈ B(M ′).
The abstraction is model-decreasing (MD) if for all
u ∈ Σ∗, α(u) ∈ B(M ′) ⇒ u ∈ B(M).

The model-increasing property indicates that the ab-
stracted model includes the abstractions of all behaviors
in the original model. The model-decreasing property
indicates that the original model includes the ground
behaviors corresponding to all behaviors in the abstract
model. Also MI and MD are properties of the abstrac-
tion M ′ of M through α, rather than just of α.

4 Building Abstract Models

Now that we have defined abstractions and several
properties, we can tackle the following question: if we
are given the original model M and an abstraction func-
tion α, how can we proceed to build a model M ′ which
is an abstraction of M through α, and possibly exhibits
one or more of the properties defined above? A first
attempt to answer such a question is the topic of the
present section.

The canonical abstraction of a model through a given
abstraction function is defined as the collection of traces
that can be obtained by abstracting the traces in the
original model.

1In this paper the possible values of l are just N and F .

Definition 13 The canonical abstraction M̂ ′ of model
M through abstraction function α is the model defined

by Bl(M̂
′) = {u′ ∈ Σ′∗ | ∃u ∈ Bl(M) : u′ = α(u)}.

The definition ensures that the abstractions u′ =
α(u) of the traces u of model M are indeed traces of

model M̂ ′, and that they are associated with the correct
fault modes.

Lemma 2 The canonical abstraction M̂ ′ of M is MI

and fault-consistent. Moreover, the language B(M̂ ′) is
the minimal language with such properties w.r.t. M and
abstraction function α.

Sketch of Proof: The definitions of MI and fault-
consistence are trivially satisfied by the canonical ab-
straction. Furthermore, it is obvious that removing any
trace u from Bl will either make the abstraction non MI
(if u /∈ B¬l) or non fault-consistent (if u ∈ B¬l) where
{l,¬l} = Υ, i.e., ¬l represents the other fault label in
the set {N, F}. 2

An interesting corollary of Lemma 2 is that abstrac-

tion M ′ of M is MI iff B(M ′) ⊇ B(M̂ ′), which provides
a lower bound for MI abstractions.

At the syntactic level, assuming abstraction func-
tion α can be represented by finite automaton A(α) =
〈Qα, Σ, Σ′, Tα, q0α〉, it is possible to build the automa-

ton of abstract model M̂ ′. To this end, we first define
the extension of automaton A(M).

Definition 14 Given model M and abstraction func-
tion α from Σ to Σ′, the extension of automaton A(M)
with respect to A(α) is the automaton A(Mx) =
〈Qx, Σx, Tx, Σox, q0x,Qx〉 defined by:

• Qx = Q × Qα and q0x = 〈q0, q0α〉,
• Σx = Σ ∪ Σ′ and Σox = Σo,

• Tx = TxM ∪ TxM ′ , where

– TxM = {〈〈q, qα〉, e, 〈q′, q′α〉〉 | e ∈ Σ ∧
〈qα, e, q′α〉 ∈ Tα ∧ 〈q, e, q′〉 ∈ T }, and

– TxM ′ = {〈〈q, qα〉, e, 〈q′, q′α〉〉 | e ∈ Σ′ ∧
〈qα, e, q′α〉 ∈ Tα ∧ q = q′},

• Qx(〈q, qα〉) = Q(q).

A Σ-path on the extended automaton A(Mx) is a

double sequence of states and transitions q0
x

e1−→ . . .
ek−→

qk
x such that all events ei are in Σ. When there exists

a Σ-path from q0
x to qk

x, we write q0
x

Σ
∗

−−→ qk
x.

The extended automaton follows two traces on A(M)
and on A(α) together: it follows a path on A(M) as long
as it stays in an input state of A(α); when it reaches an
output state of A(α), it takes all the transitions on Σ′

events before continuing the path on A(M).
We can now define the canonical automaton as a

projection of the extended automaton on the abstract
events.

Definition 15 The canonical abstraction automa-
ton of model M , whose extension is A(Mx) =
〈Qx, Σx, Tx, Σox, q0x,Qx〉, with respect to α is the au-

tomaton A(M̂ ′) = 〈Q′, Σ′, T ′, Σ′

o, q
′

0,Q
′〉 defined by:

0N , q 1N , q

2N , qg

2N , q

3N , qd

3N , q

0N , qw

4F , q 5F , qw 5F , q

6F , q7F , q

7F , qd

7F , qg
r

g

d

c

w

w′

c

g′

d′

f w w′

r

g

d

g′

d′

cw

Figure 3: Extended automaton

0N , q

2N , q

3NF , q 5F , q

7F , q

g′

g′

g′d′

d′

d′

w′

w′

g′|d′w′

g′|d′

Figure 4: Canonical automaton

• Q′ = Qx and q′0 = q0x,

• Σ′

o = ∅,

• T ′ = TxM ′ ∪ Tjump where

– TxM ′ is defined as above,

– Tjump = {〈q, e, q′〉 | ∃q′′ ∈ Qx : (q
Σ

∗

−−→ q′′) ∧
(〈q′′, e, q′〉 ∈ TxM ′)},

• Q′(〈q, qα〉) =
⋃

q′∈Q,q
Σ∗

−−→q′

Q(q′).

The extended automaton and the canonical automa-
ton for the model of Figure 1 and the abstraction func-
tion represented in Figure 2 are given in Figure 3 and
Figure 4.

We note that state 〈3, q〉 in the canonical automaton
is labeled with N, F , i.e., the union of Q(〈3, q〉) and
Q(〈4, q〉) since 〈3, q〉 and 〈4, q〉 are connected by the

Σ-path 〈3, q〉
f

−→ 〈4, q〉 in the extended automaton.

Theorem 1 The canonical automaton presented in
Definition 15 is a syntactic representation of the canon-
ical model presented in Definition 13.

Sketch of Proof: On the one hand, it can be
shown that any trace ux on the extended automaton
corresponds to the intertwinning of a trace u and (pos-
sibly a prefix of) its abstraction α(u), and that it con-
tains all such ux. On the other hand, it is trivial to
see that the canonical automaton is the projection of
the traces of the extended automaton on the events of

Σ′. Therefore, the canonical automaton contains ex-
actly the traces that are abstractions of traces of the
original model. Furthermore, it is trivial to see that
each trace u′ of the canonical automaton is associated
with the fault modes associated with the trace u such
that α(u) = u′. 2

Given an abstraction function α, we can therefore

generate the canonical abstraction automaton A(M̂ ′)
from the original model A(M), and such abstracion
is MI, fault-consistent and (trivially) obs-consistent.
While these properties are fundamental for diagnosis, as
we shall see in the next section, there is a priori no guar-
antee that the abstract automaton will be smaller than
the original one. Since the simplification of the model
is one of the main goals of abstraction, additional syn-
tactic transformations based on the characteristics of α
will in general be performed on A(M̂ ′) in order to re-
duce the size of the automaton without losing its prop-
erties; see (Pencolé, Kamenetsky, and Schumann 2006;
Kan John, Grastien, and Pencolé 2010) for two exam-
ples of syntactic transformations which can yield signif-
icant size reductions.

5 Abstract Diagnosis

We now discuss how diagnosis can be computed with an
abstract model M ′. We assume that M ′ is an abstrac-
tion of the original model M through an obs-consistent
abstraction function α, and that αo is the observable
abstraction function derived from α.

The system produces a trace u ∈ Σ∗ and generates
observation σ = obs(u). The diagnosis problem could
be defined at the ground level by P = 〈M, σ〉; however
we want to solve the problem using the abstract model
M ′. Since observation σ is given in terms of Σo events
instead of the abstract observable events Σ′

o, we need
to abstract σ using αo.

Definition 16 An abstract MBD problem is a tuple
AP = 〈M ′, αo, σ〉 where M ′ is a model, αo is an ab-
straction function from Σo to Σ′

o, and σ ∈ Σo
∗ is an

observable trace.
The abstract MBD ∆(AP) is the MBD of problem

P ′ = 〈M ′, αo(σ)〉.

We notice how important the obs-consistency prop-
erty is. If it does not hold, then it means that αo may
not exist; therefore, it would be impossible to translate
σ to a sequence of observations in the abstract language.

The question is however whether the result ∆(P ′) of
the abstract MBD problem will be equivalent to the
result ∆(P) of the original problem. There are many
reasons why these results might be different:

• the fault modes associated with a trace and its ab-
straction might differ: this could affect both correct-
ness and precision.

• M ′ may include traces that correspond to no trace
in M and conversely: this could affect respectively
precision and correctness.

• two distinguishable traces in B(M) may be indis-
tinguishable in B(M ′) (i.e. obs(u) 6= obs(u′) ∧
obs′(α(u)) = obs′(α(u′))): this could affect precision.

In the following theorem we identify a set of sufficient
conditions such that correctness is preserved.

Theorem 2 Let P = 〈M, σ〉 be an MBD problem and
let α be an abstraction function such that M ′ is an ab-
straction of M through α.

If M ′ is a model-increasing, obs-consistent, and fault-
consistent abstraction of M through α then the follow-
ing holds: if diagnosis ∆(P) is correct, then diagnosis
∆(AP) of abstract diagnosis problem AP = 〈M ′, αo, σ〉
is correct.

Proof: Let δ ∈ Υ denote the actual diagnosis mode
of the system.

If ∆(P) is correct, then δ ∈ ∆(P); therefore, there
exists u ∈ Bδ(M) such that obs(u) = σ.

Let us denote α(u) by u′. Because the abstrac-
tion is model-increasing, u′ ∈ B(M ′); furthermore, be-
cause the abstraction is fault-consistent, u′ ∈ Bδ(M

′).
Finally, because the abstraction is obs-consistent,
obs′(u′) = αo(obs(u)) = αo(σ). Therefore, δ ∈ ∆(P ′).
2

This result is quite important, and from now on we
shall assume abstractions that are model-increasing,
obs-consistent, and fault-consistent (we will denote such
abstractions as MI-OF abstractions); these properties
are quite natural, and relate to separate elements of the
model (list of traces, observations, fault modes) which
can be checked independently.

Unfortunately, it is not possible to state a similar re-
sult about the precision of diagnosis. However, it should
be noted that for dynamic systems such as DES, a fault
usually requires time to propagate and become identi-
fiable; rather than precision, the property the system
is usually required to satisfy is diagnosability. There-
fore, instead of tackling the problem of preserving the
precision of diagnosis across abstraction, we will discuss
how to preserve diagnosability across abstraction. This
is the focus of next section.

6 Abstract Diagnosability
Diagnosability is the problem of determining whether
the diagnostic algorithm will be able to diagnose a fault
if it occurs. Assume that the model given in Figure 1
models exactly the possible behaviors of the system and
consider the abstraction given in Figure 5 where ab-
straction function α is the one represented in Figure 2.
Assume also that events g′, d′ and w′ are observable.

Looking only at Figure 5, it seems the system is not
diagnosable since it might follow a trace w′ = d′ω which
is both nominal and faulty, generating the observation
σ′ = obs′(w′) = d′ω. However, looking at the model in
Figure 1, the system cannot generate a faulty trace wf

such that α(wf) = w′. In actual facts, the model in
Figure 5 is diagnosable because a faulty behavior will
always generate the observable abstract sub trace d′ ·w′

which can only be emitted by faulty abstract traces.

NN F

d′

g′

d′

g′|w′d′ g′|d′|w′

Figure 5: Example of incorrect diagnosability analysis.

We formalize this result by including the exact sys-
tem model in the definition of diagnosability; therefore,
diagnosability involves two models of the system while
classical definitions involve only one model. Because
the exact model of the system is usually not available,
we make the common assumption that the available
ground model exactly captures the system behavior.

6.1 Diagnosability with an Abstract
Model

We mentioned in a former section that correctness is
preserved if the abstraction is MI-OF. Therefore, our
new definition of diagnosability is meant to apply par-
ticularly to the ground model M and an MI-OF ab-
straction M ′ of such model.

Note that, since it was proved in (Cordier, Travé-
Massuyès, and Pucel 2006) that diagnosability for mul-
tiple faults reduces to diagnosability for every fault,
our simplifying assumption that there is only one fault
mode does not impact our discussion on diagnosability.

Definition 17 System Γ is diagnosable by model M ′

iff

1. there exists a finite bound n such that for any faulty
trace u of system Γ, if u generated n or more events
after reaching the faulty mode, then the diagnosis of
problem P ′(M ′, αo(obs(u))) is {F}, and

2. for any trace u of system Γ, the diagnosis of prob-
lem P ′(M ′, αo(obs(u))) returns {F} only if trace u is
faulty.

Diagnosability definitions usually only include the
first item as it is assumed the model and diagnostic
algorithm are correct, which implies the second item of
Definition 17. Since we assume that model M ′ is correct
(because it is an MI-OF abstraction), we also concen-
trate on the first item, which can be expressed as the
following equation (inspired by the classical definition
of (Sampath et al. 1995)).

∃n ∈ N : ∀u, u1, u2 ∈ ΣG
∗,

(u = u1.u2 ∈ B(M)) ∧ (u1 ∈ BF (M)) ∧
(|u2| ≥ n) ⇒ D

(1)

where D is the diagnosability property

∆(〈M ′, obsΣ′

o
(α(u))〉) = {F}. (2)

As opposed to the classical definition where it is as-
sumed M = M ′, Equation 1 involves two models: the
ground model M and the model M ′ used for the di-
agnosis. The only reference to this distinction we are
aware of is (Grastien 2009).

6.2 Diagnosability by Twin Plant

Diagnosability is usually performed using the twin plant
technique (Jiang et al. 2001). Two models are used:
the first model is used to generate a faulty trace (u in
Equation 1) and the second model represents the diag-
noser which tries to find a nominal trace that generates
the same observation as the faulty trace. Both mod-
els are synchronized so that a trace on the twin plant
represents two traces from each model generating the
same observation. Following the role of each model, we
call simulation model MS the first model and diagnoser
model MD the second model.

In the standard twin plant technique, models MS and
MD are instances of the same system model. Following
Equation 1, we need to redefine the twin plant approach
when MD is an MI-OF abstraction of MS . The intu-
ition is given in Figure 6. Because MS and MD are de-
fined on different sets of events, they cannot be directly
synchronized. Instead, they are transformed in such a
way that they can be synchronized. Consider a faulty
trace u on simulation model MS ; this trace generates
the observations obs(u). A transformation that makes
the observations obs(u) meaningful for diagnosis model
MD is to translate these observations by αo(obs(u)).
The transformation Tr is performed by synchronizing
MS with the automaton representation of αo.

MS Mαo

⊗

Tr(MS) MD

⊗

TP

Figure 6: Twin-Plant with an Abstract Model

Definition 18 The twin plant TP (MS, MD, Mαo
) is

the Büchi automaton 〈Q, Σ, T, q0, A〉 defined as follows:

• Q = QS × QD × Qαo
and q0 = 〈qS0, qD0, qαo0〉,

• Σ = ΣS ∪ ΣD,

• T = {〈〈qS , qD, qαo
〉, e, 〈q′S , q′D, q′αo

〉〉} such that

1 a– e ∈ Σαo
∧ 〈qαo

, e, q′αo
〉 ∈ Tαo

or

b– e /∈ Σαo
∧

(
qαo

= q′αo

)
,

and

2 a– e ∈ ΣS ∧ 〈qS , e, q′S〉 ∈ TS ∧ (qD = q′D) or
b– e ∈ ΣD ∧ (qS = q′S) ∧ 〈qD, e, q′D〉 ∈ TD.

and

• A = {q ∈ QS | F ∈ QS(q)} × {q ∈ QD | N ∈
QD(q)} × Qαo

.

Twin plant TP is defined on the Cartesian prod-
uct of the state space of the models and the automa-
ton A(Mαo

). Each transition on twin plant TP corre-
sponds to a transition on either simulation model MS

or diagnoser model MD; in case the associated event

is observable, it also triggers a state change on au-
tomaton A(Mαo

) which forces the equivalence between
the observations of both models. Set A represents the
ambiguous states, i.e., states where the actual trace
uS ∈ MS is faulty whilst a nominal diagnosed trace
uD ∈ MD exists that is observationally equivalent.

Theorem 3 Let M be the ground model of system Γ,
let M ′ be an MI-OF abstraction of M through abstrac-
tion function α. Then, system Γ is diagnosable through
model M ′ iff twin plant TP(M, M ′, Mαo

) contains no
infinite cycle on ambiguous states reachable from its ini-
tial state.

Sketch of Proof: Because the abstraction is MI-
OF, we only need to prove Equation 1.

1) Assume TP(M, M ′, Mαo
) contains an infinite cy-

cle on ambiguous states reachable from its initial state.
Then, there exists a trace wTP ∈ LA(TP) (where the
index A means that the trace reaches and stays in the
set of ambiguous states). Then because of the way the
twin plant was defined the projections of wTP on ΣG

and Σ′ represent an infinite faulty trace wG of M as well
as a nominal trace w′ of M ′. Furthermore, those traces
are such that αo(obsM (wG)) = obsM ′(w′). Therefore,
the system is not diagnosable.

2) Assume the system is not diagnosable. Then there
exist an infinite faulty trace wG ∈ LF (M) and a nom-
inal trace w′ ∈ LN (M ′) ∪ BN (M ′) such that for all
uG < wG, ∃u′ ⊑ w′ where obsΣ′(u′) = α(obsΣo

(uG)).
Because the state spaces of M , M ′ and Mαo

are finite,
it is possible to choose w′ and wG such that they loop,
i.e., such that wG = v1 · (v2)

ω, w′ = v′1 · (v′2)
ω . It is

then easy to show that there exists wTP ∈ LA(TP)
that corresponds to the intertwining of these traces. 2

The test complexity is quadratric in the size of twin
plant TP (Jiang et al. 2001).

7 Conclusions

This paper presented a theory of abstraction for diag-
nosis of DES. In contrast to the general theory of refor-
mulation defined in (Choueiry, Iwasaki, and McIlraith
2005), we are only interested in the abstraction of DES
system models, and in how the abstract model com-
pares with respect to the original model forthe specific
task of diagnosis.

Abstraction has already been exploited for the diag-
nosis of DES. Pencolé et al. (2006) defined the model
as a set of synchronous automata each one modeling a
component in the system; the abstraction operated on
the model eliminates some component automata that
are identified as unnecessary for diagnosing a specific
fault. This idea is further extended by Kan John et
al. (2010), where some connections among components
are ignored; the isolated components are automatically
eliminated as a side-effect. These works define abstrac-
tions that are simple, intuitive and useful, but they do
not provide a general formal framework for abstraction
in DES diagnosis, which to the best of our knowledge
is still missing from the literature.

We identified the obs-consistency property as essen-
tial to allow diagnosis with an abstract model, and the
model-increasing (MI) and fault-consistency properties
as essential for abstract diagnosis correctness. In order
to check the diagnostic precision of an abstract DES
model, we also introduced a diagnosability test which
involves both the abstract and the ground model. The
proposed theory is formulated at the semantic level as
a transformation of the set of possible behaviors of the
DES; this choice made it possible to express the funda-
mental properties mentioned above (most notably, MI)
in a natural and intuitive way. However, throughout
the paper, we have linked the semantic notions to the
corresponding syntactic notions, based on the represen-
tation of the DES model as a finite automaton; this will
allow us to study different types of abstraction and, in
particular, possible abstraction operations to be applied
to the canonical abstraction automaton.

References
Cassandras, Chr., and Lafortune, St. 1999. Introduction to
discrete event systems. Kluwer Academic Publishers.

Choueiry, B.; Iwasaki, Yu.; and McIlraith, Sh. 2005.
Towards a practical theory of reformulation for reason-
ing about physical systems. Artificial Intelligence (AIJ)
162:145–204.

Cordier, M.-O.; Travé-Massuyès, L.; and Pucel, X. 2006.
Comparing diagnosability in continuous and discrete-event
systems. In Seventeenth International Workshop on Princi-
ples of Diagnosis (DX-06), 55–60.

Giunchiglia, F., and Walsh, T. 1992. A theory of abstrac-
tion. Artificial Intelligence (AIJ) 56(2–3):323–390.

Grastien, Al. 2009. Symbolic testing of diagnosability.
In 20th International Workshop on Principles of Diagnosis
(DX-09), 131–138.

Jiang, Sh.; Huang, Zh.; Chandra, V.; and Kumar, R. 2001.
A polynomial algorithm for diagnosability of discrete-event
systems. IEEE Transactions on Automatic Control (TAC)
46(8):1318–1321.

Kan John, Pr.; Grastien, Al.; and Pencolé, Y. 2010. Syn-
thesis of a distributed and accurate diagnoser. In 21st In-
ternational Workshop on Principles of Diagnosis (DX-10),
209–216.

Krysander, M., and Nyberg, M. 2008. Statistical properties
and design criterions for fault isolation in noisy systems. In
Nineteenth International Workshop on Principles of Diag-
nosis (DX-08), 101–108.

Nayak, P., and Levy, A. 1995. A semantic theory of ab-
straction. In Proc. IJCAI, 196–202.

Pencolé, Y.; Kamenetsky, D.; and Schumann, An. 2006.
Towards low-cost fault diagnosis in large component-based
systems. In Sixth IFAC Symposium on Fault Detection, Su-
pervision and Safety of Technical Processes (SafeProcess-
06).

Sampath, M.; Sengupta, R.; Lafortune, St.; Sinnamohideen,
K.; and Teneketzis, D. 1995. Diagnosability of discrete-event
systems. IEEE Transactions on Automatic Control (TAC)
40(9):1555–1575.

Zanella, M., and Lamperti, Gi. 2003. Diagnosis of active
systems. Kluwer Academic Publishers.

